3.1.40 \(\int (a+a \cos (c+d x))^4 \sec ^5(c+d x) \, dx\) [40]

Optimal. Leaf size=96 \[ \frac {35 a^4 \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {8 a^4 \tan (c+d x)}{d}+\frac {27 a^4 \sec (c+d x) \tan (c+d x)}{8 d}+\frac {a^4 \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {4 a^4 \tan ^3(c+d x)}{3 d} \]

[Out]

35/8*a^4*arctanh(sin(d*x+c))/d+8*a^4*tan(d*x+c)/d+27/8*a^4*sec(d*x+c)*tan(d*x+c)/d+1/4*a^4*sec(d*x+c)^3*tan(d*
x+c)/d+4/3*a^4*tan(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {2836, 3855, 3852, 8, 3853} \begin {gather*} \frac {4 a^4 \tan ^3(c+d x)}{3 d}+\frac {8 a^4 \tan (c+d x)}{d}+\frac {35 a^4 \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {a^4 \tan (c+d x) \sec ^3(c+d x)}{4 d}+\frac {27 a^4 \tan (c+d x) \sec (c+d x)}{8 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^4*Sec[c + d*x]^5,x]

[Out]

(35*a^4*ArcTanh[Sin[c + d*x]])/(8*d) + (8*a^4*Tan[c + d*x])/d + (27*a^4*Sec[c + d*x]*Tan[c + d*x])/(8*d) + (a^
4*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + (4*a^4*Tan[c + d*x]^3)/(3*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2836

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int (a+a \cos (c+d x))^4 \sec ^5(c+d x) \, dx &=\int \left (a^4 \sec (c+d x)+4 a^4 \sec ^2(c+d x)+6 a^4 \sec ^3(c+d x)+4 a^4 \sec ^4(c+d x)+a^4 \sec ^5(c+d x)\right ) \, dx\\ &=a^4 \int \sec (c+d x) \, dx+a^4 \int \sec ^5(c+d x) \, dx+\left (4 a^4\right ) \int \sec ^2(c+d x) \, dx+\left (4 a^4\right ) \int \sec ^4(c+d x) \, dx+\left (6 a^4\right ) \int \sec ^3(c+d x) \, dx\\ &=\frac {a^4 \tanh ^{-1}(\sin (c+d x))}{d}+\frac {3 a^4 \sec (c+d x) \tan (c+d x)}{d}+\frac {a^4 \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{4} \left (3 a^4\right ) \int \sec ^3(c+d x) \, dx+\left (3 a^4\right ) \int \sec (c+d x) \, dx-\frac {\left (4 a^4\right ) \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d}-\frac {\left (4 a^4\right ) \text {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d}\\ &=\frac {4 a^4 \tanh ^{-1}(\sin (c+d x))}{d}+\frac {8 a^4 \tan (c+d x)}{d}+\frac {27 a^4 \sec (c+d x) \tan (c+d x)}{8 d}+\frac {a^4 \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {4 a^4 \tan ^3(c+d x)}{3 d}+\frac {1}{8} \left (3 a^4\right ) \int \sec (c+d x) \, dx\\ &=\frac {35 a^4 \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {8 a^4 \tan (c+d x)}{d}+\frac {27 a^4 \sec (c+d x) \tan (c+d x)}{8 d}+\frac {a^4 \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {4 a^4 \tan ^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(797\) vs. \(2(96)=192\).
time = 6.41, size = 797, normalized size = 8.30 \begin {gather*} -\frac {35 (a+a \cos (c+d x))^4 \log \left (\cos \left (\frac {c}{2}+\frac {d x}{2}\right )-\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right ) \sec ^8\left (\frac {c}{2}+\frac {d x}{2}\right )}{128 d}+\frac {35 (a+a \cos (c+d x))^4 \log \left (\cos \left (\frac {c}{2}+\frac {d x}{2}\right )+\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right ) \sec ^8\left (\frac {c}{2}+\frac {d x}{2}\right )}{128 d}+\frac {(a+a \cos (c+d x))^4 \sec ^8\left (\frac {c}{2}+\frac {d x}{2}\right )}{256 d \left (\cos \left (\frac {c}{2}+\frac {d x}{2}\right )-\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )^4}+\frac {(a+a \cos (c+d x))^4 \sec ^8\left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{24 d \left (\cos \left (\frac {c}{2}\right )-\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {c}{2}+\frac {d x}{2}\right )-\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )^3}+\frac {(a+a \cos (c+d x))^4 \sec ^8\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (97 \cos \left (\frac {c}{2}\right )-65 \sin \left (\frac {c}{2}\right )\right )}{768 d \left (\cos \left (\frac {c}{2}\right )-\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {c}{2}+\frac {d x}{2}\right )-\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )^2}+\frac {5 (a+a \cos (c+d x))^4 \sec ^8\left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{12 d \left (\cos \left (\frac {c}{2}\right )-\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {c}{2}+\frac {d x}{2}\right )-\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )}-\frac {(a+a \cos (c+d x))^4 \sec ^8\left (\frac {c}{2}+\frac {d x}{2}\right )}{256 d \left (\cos \left (\frac {c}{2}+\frac {d x}{2}\right )+\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )^4}+\frac {(a+a \cos (c+d x))^4 \sec ^8\left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{24 d \left (\cos \left (\frac {c}{2}\right )+\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {c}{2}+\frac {d x}{2}\right )+\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )^3}+\frac {(a+a \cos (c+d x))^4 \sec ^8\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-97 \cos \left (\frac {c}{2}\right )-65 \sin \left (\frac {c}{2}\right )\right )}{768 d \left (\cos \left (\frac {c}{2}\right )+\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {c}{2}+\frac {d x}{2}\right )+\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )^2}+\frac {5 (a+a \cos (c+d x))^4 \sec ^8\left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{12 d \left (\cos \left (\frac {c}{2}\right )+\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {c}{2}+\frac {d x}{2}\right )+\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^4*Sec[c + d*x]^5,x]

[Out]

(-35*(a + a*Cos[c + d*x])^4*Log[Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2]]*Sec[c/2 + (d*x)/2]^8)/(128*d) + (35*(
a + a*Cos[c + d*x])^4*Log[Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2]]*Sec[c/2 + (d*x)/2]^8)/(128*d) + ((a + a*Cos
[c + d*x])^4*Sec[c/2 + (d*x)/2]^8)/(256*d*(Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])^4) + ((a + a*Cos[c + d*x])
^4*Sec[c/2 + (d*x)/2]^8*Sin[(d*x)/2])/(24*d*(Cos[c/2] - Sin[c/2])*(Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])^3)
 + ((a + a*Cos[c + d*x])^4*Sec[c/2 + (d*x)/2]^8*(97*Cos[c/2] - 65*Sin[c/2]))/(768*d*(Cos[c/2] - Sin[c/2])*(Cos
[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])^2) + (5*(a + a*Cos[c + d*x])^4*Sec[c/2 + (d*x)/2]^8*Sin[(d*x)/2])/(12*d*
(Cos[c/2] - Sin[c/2])*(Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])) - ((a + a*Cos[c + d*x])^4*Sec[c/2 + (d*x)/2]^
8)/(256*d*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2])^4) + ((a + a*Cos[c + d*x])^4*Sec[c/2 + (d*x)/2]^8*Sin[(d*x
)/2])/(24*d*(Cos[c/2] + Sin[c/2])*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2])^3) + ((a + a*Cos[c + d*x])^4*Sec[c
/2 + (d*x)/2]^8*(-97*Cos[c/2] - 65*Sin[c/2]))/(768*d*(Cos[c/2] + Sin[c/2])*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*
x)/2])^2) + (5*(a + a*Cos[c + d*x])^4*Sec[c/2 + (d*x)/2]^8*Sin[(d*x)/2])/(12*d*(Cos[c/2] + Sin[c/2])*(Cos[c/2
+ (d*x)/2] + Sin[c/2 + (d*x)/2]))

________________________________________________________________________________________

Maple [A]
time = 0.23, size = 142, normalized size = 1.48

method result size
derivativedivides \(\frac {a^{4} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+4 a^{4} \tan \left (d x +c \right )+6 a^{4} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-4 a^{4} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+a^{4} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(142\)
default \(\frac {a^{4} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+4 a^{4} \tan \left (d x +c \right )+6 a^{4} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-4 a^{4} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+a^{4} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(142\)
risch \(-\frac {i a^{4} \left (81 \,{\mathrm e}^{7 i \left (d x +c \right )}-96 \,{\mathrm e}^{6 i \left (d x +c \right )}+105 \,{\mathrm e}^{5 i \left (d x +c \right )}-480 \,{\mathrm e}^{4 i \left (d x +c \right )}-105 \,{\mathrm e}^{3 i \left (d x +c \right )}-544 \,{\mathrm e}^{2 i \left (d x +c \right )}-81 \,{\mathrm e}^{i \left (d x +c \right )}-160\right )}{12 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{4}}+\frac {35 a^{4} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{8 d}-\frac {35 a^{4} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{8 d}\) \(145\)
norman \(\frac {\frac {93 a^{4} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}+\frac {605 a^{4} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}+\frac {5 a^{4} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}-\frac {515 a^{4} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}+\frac {125 a^{4} \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}+\frac {133 a^{4} \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}-\frac {35 a^{4} \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}-\frac {35 a^{4} \left (\tan ^{15}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}-\frac {35 a^{4} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 d}+\frac {35 a^{4} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d}\) \(224\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^4*sec(d*x+c)^5,x,method=_RETURNVERBOSE)

[Out]

1/d*(a^4*ln(sec(d*x+c)+tan(d*x+c))+4*a^4*tan(d*x+c)+6*a^4*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x
+c)))-4*a^4*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+a^4*(-(-1/4*sec(d*x+c)^3-3/8*sec(d*x+c))*tan(d*x+c)+3/8*ln(sec(
d*x+c)+tan(d*x+c))))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 182 vs. \(2 (88) = 176\).
time = 0.28, size = 182, normalized size = 1.90 \begin {gather*} \frac {64 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} a^{4} - 3 \, a^{4} {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 72 \, a^{4} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 24 \, a^{4} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 192 \, a^{4} \tan \left (d x + c\right )}{48 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^4*sec(d*x+c)^5,x, algorithm="maxima")

[Out]

1/48*(64*(tan(d*x + c)^3 + 3*tan(d*x + c))*a^4 - 3*a^4*(2*(3*sin(d*x + c)^3 - 5*sin(d*x + c))/(sin(d*x + c)^4
- 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin(d*x + c) - 1)) - 72*a^4*(2*sin(d*x + c)/(sin(d*x
 + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 24*a^4*(log(sin(d*x + c) + 1) - log(sin(d*x +
c) - 1)) + 192*a^4*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]
time = 0.71, size = 111, normalized size = 1.16 \begin {gather*} \frac {105 \, a^{4} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 105 \, a^{4} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (160 \, a^{4} \cos \left (d x + c\right )^{3} + 81 \, a^{4} \cos \left (d x + c\right )^{2} + 32 \, a^{4} \cos \left (d x + c\right ) + 6 \, a^{4}\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^4*sec(d*x+c)^5,x, algorithm="fricas")

[Out]

1/48*(105*a^4*cos(d*x + c)^4*log(sin(d*x + c) + 1) - 105*a^4*cos(d*x + c)^4*log(-sin(d*x + c) + 1) + 2*(160*a^
4*cos(d*x + c)^3 + 81*a^4*cos(d*x + c)^2 + 32*a^4*cos(d*x + c) + 6*a^4)*sin(d*x + c))/(d*cos(d*x + c)^4)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**4*sec(d*x+c)**5,x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3005 deep

________________________________________________________________________________________

Giac [A]
time = 0.51, size = 122, normalized size = 1.27 \begin {gather*} \frac {105 \, a^{4} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 105 \, a^{4} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (105 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 385 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 511 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 279 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}}{24 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^4*sec(d*x+c)^5,x, algorithm="giac")

[Out]

1/24*(105*a^4*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 105*a^4*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(105*a^4*tan
(1/2*d*x + 1/2*c)^7 - 385*a^4*tan(1/2*d*x + 1/2*c)^5 + 511*a^4*tan(1/2*d*x + 1/2*c)^3 - 279*a^4*tan(1/2*d*x +
1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^4)/d

________________________________________________________________________________________

Mupad [B]
time = 3.50, size = 141, normalized size = 1.47 \begin {gather*} \frac {35\,a^4\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{4\,d}-\frac {\frac {35\,a^4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{4}-\frac {385\,a^4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{12}+\frac {511\,a^4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{12}-\frac {93\,a^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*cos(c + d*x))^4/cos(c + d*x)^5,x)

[Out]

(35*a^4*atanh(tan(c/2 + (d*x)/2)))/(4*d) - ((511*a^4*tan(c/2 + (d*x)/2)^3)/12 - (385*a^4*tan(c/2 + (d*x)/2)^5)
/12 + (35*a^4*tan(c/2 + (d*x)/2)^7)/4 - (93*a^4*tan(c/2 + (d*x)/2))/4)/(d*(6*tan(c/2 + (d*x)/2)^4 - 4*tan(c/2
+ (d*x)/2)^2 - 4*tan(c/2 + (d*x)/2)^6 + tan(c/2 + (d*x)/2)^8 + 1))

________________________________________________________________________________________